1)

$$f(x) = x^3 + ax^2 + b$$
 $f'(x) = 3x^2 + 2ax$
 $f(z) = 8 + 4a + b$ $f'(z) = 12 + 4a$
 $8 + 4a + b = 3$ $12 + 4a = 0$
 $8 - 12 + b = 3$ $4a = -12$
 $\boxed{b} = 7$ $\boxed{a} = -3$

2)
$$f'(x) = x(x-3)^{2}(x+1)^{4} = 0$$

$$X = 0 \quad X = 3 \quad X = -1$$

$$f'(x) = x(x-3)^{2}(x+1)^{4} = 0$$

4)

$$y = x^{2} - 4x + 3 \quad [0,5]$$

Bud point $y' = 2x - 4 \quad x \quad y$
 $x = 0 \quad 2x - 4 = 0 \quad 0 \quad 3$
 $x = 5 \quad x = 2 \quad 2 \quad -1$
 $5 \quad 8$

y has abs max of y=8 @ x=5.

5)

$$y = 2x^3 - 3x^2 - 12x$$

 $y' = 6x^2 - 6x - 12 = 0$
 $x^2 - x - 2 = 0$
 $(x - 2)(x + 1) = 0$
 $x = 2 \quad x = -1$

$$y = x^{4} - 4x^{3}$$

 $y' = 4x^{3} - 12x^{2}$
 $y'' = 12x^{2} - 24x = 0$
 $12x(x-2) = 0$
 $x = 0$
 $x = 0$
 $y = 0$
 y

*Y has a local max ex=-1
ble y' is signs from + to -.

*Y has a local min ex=2
ble y' is signs from - to t.

7) $f(x) = x^{4} - 4x^{2}$ $f'(x) = 4x^{3} - 8x = 0$ $4x(x^{2}-2) = 0$ $(x^{2}-2) = 0$ $(x^{2}-2) = 0$ $(x^{2}-2) = 0$

- 8) point F, since f has a horizontal tangent and is concave down
- 9) point B, since f is increasing at a point of inflection
- 10) point G, since f is decreasing and concave down
- 11) point E, since f is increasing and concave up

(A) I max, zmin